Breakdown Points for Maximum Likelihood Estimators of Location–scale Mixtures

نویسندگان

  • Christian Hennig
  • C. HENNIG
چکیده

ML-estimation based on mixtures of Normal distributions is a widely used tool for cluster analysis. However, a single outlier can make the parameter estimation of at least one of the mixture components break down. Among others, the estimation of mixtures of t-distributions by McLachlan and Peel [Finite Mixture Models (2000) Wiley, New York] and the addition of a further mixture component accounting for “noise” by Fraley and Raftery [The Computer J. 41 (1998) 578–588] were suggested as more robust alternatives. In this paper, the definition of an adequate robustness measure for cluster analysis is discussed and bounds for the breakdown points of the mentioned methods are given. It turns out that the two alternatives, while adding stability in the presence of outliers of moderate size, do not possess a substantially better breakdown behavior than estimation based on Normal mixtures. If the number of clusters s is treated as fixed, r additional points suffice for all three methods to let the parameters of r clusters explode. Only in the case of r = s is this not possible for t-mixtures. The ability to estimate the number of mixture components, for example, by use of the Bayesian information criterion of Schwarz [Ann. Statist. 6 (1978) 461–464], and to isolate gross outliers as clusters of one point, is crucial for an improved breakdown behavior of all three techniques. Furthermore, a mixture of Normals with an improper uniform distribution is proposed to achieve more robustness in the case of a fixed number of components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breakdown Points for Maximum Likelihood Estimators of Location–scale Mixtures by Christian Hennig

ML-estimation based on mixtures of Normal distributions is a widely used tool for cluster analysis. However, a single outlier can make the parameter estimation of at least one of the mixture components break down. Among others, the estimation of mixtures of t-distributions by McLachlan and Peel [Finite Mixture Models (2000) Wiley, New York] and the addition of a further mixture component accoun...

متن کامل

Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring

This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...

متن کامل

A Simple Robust Estimation for Parameters of Cauchy Distribution

We define robust estimators for the parameters of the Cauchy distribution based on the probability integral method. The proposed estimators have bounded influence functions and high breakdown points. These estimators are simple, robust and consistent, but asymptotically less efficient than the maximum likelihood estimators which are not robust. A simulation study for finite sample size shows th...

متن کامل

Breakdown points of Cauchy regression-scale estimators

The lower bounds for the explosion and implosion breakdown points of the simultaneous Cauchy M-estimator (Cauchy MLE) of the regression and scale parameters are derived. For appropriate tuning constants, the breakdown point attains the maximum possible value.

متن کامل

Strong consistency of MLE for finite mixtures of location-scale distributions when the ratios of the scale parameters are exponentially small

In finite mixtures of location-scale distributions, if there is no constraint on the parameters then the maximum likelihood estimate does not exist. But when the ratios of the scale parameters are restricted appropriately, the maximum likelihood estimate exists. We prove that the maximum likelihood estimator (MLE) is strongly consistent, if the ratios of the scale parameters are restricted from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002